Peran Protozoa pada Pencernaan Ruminansia dan Dampak Terhadap Lingkungan

Yanuartono Yanuartono, Alfarisa Nururrozi, Soedarmanto Indarjulianto, Hary Purnamaningsih

Abstract


Rumen adalah ekosistem yang sangat kompleks serta mengandung berbagai jenis mikroba. Kinerja ruminansia tergantung pada aktivitas mikroorganisme mereka untuk memanfaatkan asupan pakan. Namun demikian, aktivitas mikroba rumen juga merupakan sumber utama pembentukan gas metan dari bidang pertanian yang mengakibatkan efek rumah kaca. Protozoa rumen dengan penampilan yang cukup mencolok dianggap memiliki peran penting pada ruminansia sebagai hospes. Namun, terlepas dari kenyataan bahwa protozoa dapat menyumbang hingga 50% biomassa di rumen, peran protozoa sebagai salah satu mikroba dalam ekosistem rumen masih belum jelas. Meskipun peran protozoa masih belum jelas, namun protozoa dalam rumen terbukti memiliki hubungan dengan methanogen dan telah terbukti bahwa protozoa secara tidak langsung terlibat dalam produksi gas metan. Methanogen adalah satu-satunya mikroorganisme yang diketahui mampu memproduksi metan. Karena protozoa adalah penghasil hidrogen besar, yang digunakan sebagai substrat oleh simbion metanogennya untuk mengurangi karbon dioksida menjadi metana, dengan demikian dapat diasumsikan bahwa defaunasi mengurangi metanogenesis dengan jalan menurunkan kepadatan methanogen. Tulisan ini  mencoba untuk mengevaluasi informasi terkini tentang peran protozoa di ekosistem mikroba rumen dan dampaknya terhadap lingkungan.


Keywords


Rumen, protozoa, methanogen, defaunasi

Full Text:


DOWNLOAD PDF

References


Aban, M., & Bestil, L. (2016). Potential of some legume forages for rumen defaunation in goats. Annals of Tropical Research, 38(1), 183–196.

Abdl-Rahman, M. A., Sawiress, F. A. R., & Abd El-Aty, A. M. (2010). Effect of sodium lauryl sulfate-fumaric Acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis. Veterinary Medicine International, 2010, 858474. https://doi.org/10.4061/2010/858474

Baraka, T. (2012). Rumen methanogen and protozoal communities of Tibetan sheep and Gansu Alpine Finewool sheep grazing on the Qinghai–Tibetan Plateau, China. Journal of American Science, 8(2), 448–462. https://doi.org/10.1186/s12866-018-1351-0

Bayram, G., Murat, T., & Falakali, B. (2001). New rumen ciliate from Turkish domestic cattle (Bos Taurus L.): 3. Entodinium oektemae n. sp. and E. imaii n. sp. (Entodiniidae, Entodinomorphida). Turk J Zool, 25, 269–274.

Beauchemin, K. A., Henry Janzen, H., Little, S. M., McAllister, T. A., & McGinn, S. M. (2010). New rumen ciliate from Turkish domestic cattle (Bos Taurus L.): 3. Entodinium oektemae n. sp. and E. imaii n. sp. (Entodiniidae, Entodinomorphida). Agricultural Systems, 103, 371–379. https://doi.org/doi.10.1016/j.agsy.2010.03.008

Beauchemin, K. A., McGinn, S. M., & Petit, H. V. (2007). Methane abatement strategies for cattle: Lipid supplementation of diets. Canadian Journal of Animal Science, 87(3), 431–440. https://doi.org/10.4141/CJAS07011

Broucek, J. (2014). Production of methane emissions from ruminant husbandry: a review. Journal of Environmental Protection, 05(15), 1482–1493. https://doi.org/10.4236/jep.2014.515141

Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P., & Kamel, C. (2005). Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. Journal of Dairy Science, 88(7), 2508–2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3

Cassandro, M., Mele, M., & Stefanon, B. (2013). Genetic aspects of enteric methane emission in livestock ruminants. Italian Journal of Animal Science, 12(3), 450–458.

Chaucheyras-Durand, F., & Ossa, F. (2014). Review: the rumen microbiome: composition, abundance, diversity, and new investigative tools. The Professional Animal Scientist, 30(1), 1–12. https://doi.org/10.15232/S1080-7446(15)30076-0

Christophersen, C. T., Wright, A.-D. G., & Vercoe, P. E. (2008). In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep1. Journal of Animal Science, 86(2), 384–389. https://doi.org/10.2527/jas.2007-0373

Cosgrove, G. P., Waghorn, G. C., Anderson, C. B., Peters, J. S., Smith, A., Molano, G., & Deighton, M. (2008). The effect of oils fed to sheep on methane production and digestion of ryegrass pasture. Australian Journal of Experimental Agriculture, 48(2), 189–192. https://doi.org/10.1071/EA07279

Dayyani, N., Karkudi, K., & Zakerian, A. (2013). Special rumen microbiology. International Journal of Advanced Biological and Biomedical Research, 1(11), 1397–1402.

Dehority, B. (2005). Effect of pH on viability of entodinium caudatum, entodinium exiguum, epidinium caudatum, and ophryoscolex purkynjei in vitro. The Journal of Eukaryotic Microbiology, 52(4), 339–342. https://doi.org/10.1111/j.1550-7408.2005.00041.x

Eryavuz, A., Dündar, Y., Ozdemir, M., Aslan, R., & Tekerli, M. (2003). Effects of urea and sulfur on performance of faunate and defaunate Ramlic lambs, and some rumen and blood parameters. Animal Feed Science and Technology, 109(1–4), 35–46. https://doi.org/10.1016/S0377-8401(03)00201-3

Franzolin, R., Rosales, F. P., & Soares, W. V. B. (2010). Effects of dietary energy and nitrogen supplements on rumen fermentation and protozoa population in buffalo and zebu cattle. Revista Brasileira de Zootecnia, 39(3), 549–555. https://doi.org/10.1590/S1516-35982010000300014

Gebeyehu, A., & Mekasha, Y. (2013). Defaunation : effects on feed intake , digestion , rumen metabolism and weight gain. J. Anim. Sci, 84(7), 1896–1906. https://doi.org/10.2527/jas.2005-652

Goel, G., Arvidsson, K., Vlaeminck, B., Bruggeman, G., Deschepper, K., & Fievez, V. (2009). Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and α-linolenic acid. Animal, 3(6), 810–816. https://doi.org/10.1017/S1751731109004352

Guan, H., Wittenberg, K. M., Ominski, K. H., & Krause, D. O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane1. Journal of Animal Science, 84(7), 1896–1906. https://doi.org/10.2527/jas.2005-652

Gürelli, G., Canbulat, S., Aldayarov, N., & Dehority, B. A. (2016). Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan. FEMS Microbiology Letters, 363(6), 1–7. https://doi.org/10.1093/femsle/fnw028

Hegarty, R. (2004). Genetic diversity in function and microbial metabolism of the rumen. Australian Journal of Experimental Agriculture, 44, 1–9.

Hindrichsen, I. K., Wettstein, H.-R., Machmüller, A., & Kreuzer, M. (2006). Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture, Ecosystems & Environment, 113(1–4), 150–161. https://doi.org/10.1016/J.AGEE.2005.09.004

Holmes, D. E., Giloteaux, L., Orellana, R., Williams, K. H., Robbins, M. J., & Lovley, D. R. (2014). Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Frontiers in Microbiology, 6(5), 1–9. https://doi.org/10.3389/fmicb.2014.00366

Irbis, C., & Ushida, K. (2004). Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. The Journal of General and Applied Microbiology, 50(4), 203–212.

Jabari, S., Eslami, M., Chaji, M., Mohammadabadi, T., & Bojarpour, M. (2014). Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow. Veterinary Research Forum : An International Quarterly Journal, 5(4), 295–300.

Janssen, P. H., & Kirs, M. (2008). Structure of the archaeal community of the rumen. Applied and Environmental Microbiology, 74(12), 3619–3625. https://doi.org/10.1128/AEM.02812-07

Jordan, E., Kenny, D., Hawkins, M., Malone, R., Lovett, D. K., & O’Mara, F. P. (2006). Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls1. Journal of Animal Science, 84(9), 2418–2425. https://doi.org/10.2527/jas.2005-354

Kittelmann, S., & Janssen, P. H. (2011). Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiology Ecology, 75(3), 468–481. https://doi.org/10.1111/j.1574-6941.2010.01022.x

Lee, S., Ha, J., & Cheng, K.-J. (2000). Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Animal Feed Science and Technology, 88(3–4), 201–217. https://doi.org/10.1016/S0377-8401(00)00216-9

Madsen, J., Bjerg, B., Hvelplund, T., Weisbjerg, M., & Lund, P. (2010). Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science, 129(1–3), 223–227. https://doi.org/10.1016/J.LIVSCI.2010.01.001

Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), 351–365. https://doi.org/10.1017/S1751731109990620

Miresan, V., Răducu, C., & Stetca, G. (2006). The effect of ruminal defaunation in establishing the role of the infusores in ruminal physiology. Bulletin USAMV-CN, 63, 88–92.

Martin, C., Doreau, M., & Morgavi, D. P. (2008). Methane Mitigation in Ruminants: From Rumen Microbes To The Animal. Inra, Ur 1213. Herbivores Research Unit, Research Centre of Clermont-Ferrand-Theix, F-63122. France: St Genès Champanelle.

McEwan, N., Abecia, L., Regensbogenova, M., Adam, C., Findlay, P., & Newbold, C. (2005). Rumen microbial population dynamics in response to photoperiod. Letters in Applied Microbiology, 41(1), 97–101. https://doi.org/10.1111/j.1472-765X.2005.01707.x

McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. Lancet (London, England), 370(9594), 1253–1263. https://doi.org/10.1016/S0140-6736(07)61256-2

Mohammed, R., Zhou, M., Koenig, K. ., & Guan, L. . (2011). Evaluation of rumen methanogen diversity in cattle fed diets containing dry corn distillers grains and condensed tannins using PCR-DGGE and qRT-PCR analyses. Animal Feed Science and Technology, 166–167(4), 122–131. https://doi.org/10.1016/J.ANIFEEDSCI.2011.04.061

Morgavi, D. P., Forano, E., Martin, C., & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7), 1024–1036. https://doi.org/10.1017/S1751731110000546

Mosoni, P., Martin, C., Forano, E., & Morgavi, D. P. (2011). Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep1. Journal of Animal Science, 89(3), 783–791. https://doi.org/10.2527/jas.2010-2947

Muñoz, C., Yan, T., Wills, D. A., Murray, S., & Gordon, A. W. (2012). Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. Journal of Dairy Science, 95(6), 3139–3148. https://doi.org/10.3168/jds.2011-4298

Nagaraja, T. G. (2016). Microbiology of the rumen. in rumenology (pp. 39–61). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2_2

Newbold, C. J., de la Fuente, G., Belanche, A., Ramos-Morales, E., & McEwan, N. R. (2015). The Role of Ciliate Protozoa in the Rumen. Frontiers in Microbiology, 6, 1–14. https://doi.org/10.3389/fmicb.2015.01313

Olesen, J. E., Schelde, K., Weiske, A., Weisbjerg, M. R., Asman, W. A. H., & Djurhuus, J. (2006). Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems & Environment, 112(2–3), 207–220. https://doi.org/10.1016/J.AGEE.2005.08.022

Patra, A. K. (2012). Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environmental Monitoring and Assessment, 184(4), 1929–1952. https://doi.org/10.1007/s10661-011-2090-y

Patra, A. K., & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71(11–12), 1198–1222. https://doi.org/10.1016/j.phytochem.2010.05.010

Qin, W. Z., Li, C. Y., Kim, J. K., Ju, J. G., & Song, M. K. (2012). Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australasian Journal of Animal Sciences, 25(10), 1381–1388. https://doi.org/10.5713/ajas.2012.12240

Santra, A., Chaturvedi, O., Tripathi, M., Kumar, R., & Karim, S. (2003). Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research, 47(3), 203–212. https://doi.org/10.1016/S0921-4488(02)00241-9

Santra, A., & Karim, S. (2000). Growth performance of faunated and defaunated Malpura weaner lambs. Animal Feed Science and Technology, 86(3–4), 251–260. https://doi.org/10.1016/S0377-8401(00)00161-9

Santra, A., & Karim, S. (2002). Nutrient utilization and growth performance of defaunated and faunated lambs maintained on complete diets containing varying proportion of roughage and concentrate. Animal Feed Science and Technology, 101(1–4), 87–99. https://doi.org/10.1016/S0377-8401(02)00146-3

Santra, A., Karim, S., & Chaturvedi, O. (2007). Rumen enzyme profile and fermentation characteristics in sheep as affected by treatment with sodium lauryl sulfate as defaunating agent and presence of ciliate protozoa. Small Ruminant Research, 67(2–3), 126–137. https://doi.org/10.1016/j.smallrumres.2005.08.028

Shibata, M., & Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal Science Journal, 81(1), 2–10. https://doi.org/10.1111/j.1740-0929.2009.00687.x

Skillman, L. C., Toovey, A. F., Williams, A. J., & Wright, A.-D. G. (2006). Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet. Applied and Environmental Microbiology, 72(1), 200–206. https://doi.org/10.1128/AEM.72.1.200-206.2006

Sylvester, J. T., Karnati, S. K. R., Yu, Z., Morrison, M., & Firkins, J. L. (2004). Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. The Journal of Nutrition, 134(12), 3378–3384. https://doi.org/10.1093/jn/134.12.3378

Tadesse, G. (2014). Rumen manipulation for enhanced feed utilization and improved productivity performance of ruminants: a review. Momona Ethiopian Journal of Science, 6(2), 3–17.

Tavendale, M., Meagher, L., Pacheco, D., Walker, N., Attwood, G., & Sivakumaran, S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, 88(1), 1–6. https://doi.org/org/10.1016/j.mimet.2011.09.005.

Tiago, N. P. V., Erico, da S. L., Wallacy, B. R. dos S., Andr eacute ia, S. C. aacute rio, C aacute ssio, J. T., Iacute talo, L. F., & Marco, A. ocirc nio M. de F. (2016). Ruminal microorganism consideration and protein used in the metabolism of the ruminants: A review. African Journal of Microbiology Research, 10(14), 456–464. https://doi.org/10.5897/AJMR2016.7627

Tymensen, L., Barkley, C., & McAllister, T. A. (2012). Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. Journal of Microbiological Methods, 88(1), 1–6. https://doi.org/10.1016/j.mimet.2011.09.005

Váradyová, Z., Kišidayová, S., Siroka, P., & Jalč, D. (2008). Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Animal Feed Science and Technology, 144(1–2), 44–54. https://doi.org/10.1016/j.anifeedsci.2007.09.033

Waghorn, G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production--Progress and challenges. Animal Feed Science and Technology, 147(1–3), 116–139. https://doi.org/org/10.1016/j.anifeedsci.2007.09.013

Wereszka, K., & Michałowski, T. (2012). The ability of the rumen ciliate protozoan Diploplastron affine to digest and ferment starch. Folia Microbiologica, 57(4), 375–377. https://doi.org/10.1007/s12223-012-0146-1

Wright, A., Kennedy, P., O’Neill, C. J., Toovey, A. F., Popovski, S., Rea, S. M., Klein, L. (2004). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 22(29–30), 3976–3985. https://doi.org/10.1016/j.vaccine.2004.03.053

Xia, Y., Kong, Y., Seviour, R., Forster, R., Kisidayova, S., & McAllister, T. (2014). Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. Journal of Applied Microbiology, 116(1), 14–22. https://doi.org/10.1111/jam.12356

Zhou, Y. W., McSweeney, C. S., Wang, J. K., & Liu, J. X. (2012). Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets. Animal, 6(05), 815–823. https://doi.org/10.1017/S1751731111002102



Publication ID
DOI https://doi.org/10.21776/ub.jtapro.2019.020.01.3

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.