Energy and Nitrogen Retention of Bali Heifers (Bos sondaicus) Fed Diet Containing Different Energy Protein Level

Ni Nyoman Suryani, I Wayan Suarna, I Gede Mahardika, Ni Putu Sarini, Lindawati Doloksaribu

Abstract


Database of Bali heifer particularly on their nutrient digestibility, energy and nitrogen balance of various ration formulas on their growth performance were limited.  A randomized block design with four types rations of metabolizable energy (ME) and crude protein ratios, i.e. of 2,045.38 kcal ME/kg:12.06% (Treatment A), 2,103.57 kcal ME/kg:13.11% (Treatment B), 2,201.85 kcal ME/kg:13.97% (Treatment C) and 2297.60 kcal ME/kg:15.05% (Treatment D) were conducted to evaluate nutrient digestibility, energy and nitrogen retention of Bali heifers.  The rations consisted of concentrate, urea, molasses, king grass, coconut oil and vitamin-mineral mix.  Results showed that Treatment D improved significantly of the 7,814.34 kcal/d digestible energy, 49.87 g/d digestible nitrogen, 11,015.06 kcal/d energy intake, 423.53 g/d nitrogen intake, 67.76 kcal/d energy retention, 7.91 g/d nitrogen retention, 0.33 kg/d daily weight gain (ADG), (P<0.05).  In summary, ration for Bali heifer should contain at least 2,297.60 kcal ME/kg:15.05% crude protein for better average daily weight gain.


Keywords


Bali heifers, digestibility, energy and protein rations, retention.

Full Text:


DOWNLOAD PDF

References


AOAC. (1990). Official Method of Analysis.

Brown, E. G., VandeHaar, M. J., Daniels, K. M., Liesman, J. S., Chapin, L. T., Keisler, D. H., & Nielsen, M. S. W. (2005). Effect of increasing energy and protein intake on body growth and carcass composition of heifer calves. Journal of Dairy Science, 88(2), 585–594. https://doi.org/10.3168/jds.S002 2-0302(05)72722-3

Cole, H., & Ronning, M. (1974). The Biology of Domestic Animals and Their use by Man. Animal Agricultural.

Devant, M., Ferret, A., Gasa, J., Calsamiglia, S., & Casals, R. (2000). Effects of protein concentration and degradability on performance, ruminal fermentation, and nitrogen metabolism in rapidly growing heifers fed high-concentrate diets from 100 to 230 kg body weight. Journal of Animal Science, 78(6), 1667–1676. https://doi.org/10.2527/20 00.7861667x

Dong, L. F., Zhang, W. B., Zhang, N. F., Tu, Y., & Diao, Q. Y. (2017). Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters. Journal of Animal Physiology and Animal Nutrition, 101(1), 30–37. https://doi.org/10.111 1/jpn.12493

Eastridge, M. L. (2006). Major advances in applied dairy cattle nutrition. Journal of Dairy Science, 89(4), 1311–1323. https://doi.org/10.3168/jds.S0022-030 2(06)72199-3

Funston, R. N., Larson, D. M., & Vonnahme, K. A. (2010). Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. Journal of Animal Science, 88(suppl_13), E205–E215. https://doi.org/10.2527/jas.2009-2351

Gabler, M. T., & Heinrichs, A. J. (2003). Altering soluble and potentially rumen degradable protein for prepubertal holstein heifers. Journal of Dairy Science, 86(6), 2122–2130. https:// doi.org/10.3168/jds.S0022-0302(03)7 3802-8

Hardjosubroto, W. (1994). Aplikasi Pemuliabiakan Ternak di Lapangan. Gramedia.

Heinrichs, J. (2017). Precision Feeding Dairy Heifers: Strategies and Recommendations. Penn State Extention. The Pennsylvania State University

ILCA. (1990). Livestock Systems Research Manual. International Livestock Centre for Africa.

Koch, L. E., Gomez, N. A., Bowyer, A., & Lascano, G. J. (2017). Precision-feeding dairy heifers a high rumen-undegradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios. Journal of Animal Science, 95(12), 5617–5628. https://doi.org/10.2527/ja s2017.1974

Li, L., Zhu, Y., Wang, X., He, Y., & Cao, B. (2014). Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. Journal of Animal Science and Biotechnology, 5(1), 21. https://doi. org/10.1186/2049-1891-5-21

Lohakare, J. D., S체dekum, K.-H., & Pattanaik, A. K. (2012). Nutrition-induced changes of growth from birth to first calving and its impact on mammary development and first-lactation milk yield in dairy heifers: a review. Asian-Australasian Journal of Animal Sciences, 25(9), 1338–1350. https://doi.org/10.5713/ajas.2012.12282

Ma, T., Xu, G.-S., Deng, K.-D., Ji, S.-K., Tu, Y., Zhang, N.-F., & Diao, Q.-Y. (2016). Energy requirements of early-weaned Dorper cross-bred female lambs. Journal of Animal Physiology and Animal Nutrition, 100(6), 1081–1089. https://doi.org/10.1111/jpn.12481

McDonald, P., Edwards, A., Greenhalg, J. F., & Morgan, C. (2002). Animal Nutrition (6th ed.). Longman Scientific and Technical Co.

Mohamad, K., Olsson, M., Andersson, G., Purwantara, B., Van Tol, H., Rodriguez-Martinez, H., Colenbrander, B., & Lenstra, J. (2012). The origin of Indonesian cattle and conservation genetics of the Bali cattle breed. Reproduction in Domestic Animals, 47, 18–20. https://doi.org/10.1111/j.1439-0531.2011.01960.x

Ørskov, E. (1990). Energy Nutrition in Ruminant. Elsevier Applied Science.

Sartori, R., Guardieiro, M. M., Surjus, R. S., Melo, L. F., Prata, A. B., Ishiguro, M., Bastos, M. R., & Nascimento, A. B. (2013). Metabolic hormones and reproductive function in cattle. Anim. Reprod, 10(3), 199–205.

Steel, R. G., & Torrie, J. (1995). Priciples and Procedures of Statistic. McGraw-Hill Book Co. Inc.

Suryani, N.N. (2012). Activities of mirobial rumen and productivity of Bali cattle fed with different type and composition of forage. Udayana University.

Suryani, N.N, Mahardika, I., & Sarini, N. (2017). Accelaration of fulfioment of national meat demand through improvement of quality cows and calves of Bali cattle.

Suryani, Ni Nyoman, Mahardika, I. G., Sujaya, N., & Gunawan, A. A. (2018). Increased gliricidia sepium in ration containing rice straw on rumen fermentation and microbial protein synthesis of indigenous Bali cattle. Advances in Animal and Veterinary Sciences, 7(3), 193–199. https://doi. org/10.17582/journal.aavs/2019/7.3.193.199

Suwiti, N. K., Besung, I. N. K., & Mahardika, G. N. (2017). Factors influencing growth hormone levels of Bali cattle in Bali, Nusa Penida, and Sumbawa Islands, Indonesia. Veterinary World, 10(10), 1250–1254. https://doi.org/10.14202/vetworld.2017.1250-1254

Xu, J., Hou, Y., Yang, H., Shi, R., Wu, C., Hou, Y., & Zhao, G. (2014). Effects of forage sources on rumen fermentation characteristics, performance, and microbial protein synthesis in midlactation cows. Asian-Australasian Journal of Animal Sciences, 27(5), 667–673. https://doi. org/10.5713/ajas.2013.13604

Zhang, B., Wang, C., Liu, H., Liu, J., & Liu, H. (2016). Effects of dietary protein level on growth performance and nitrogen excretion of dairy heifers. Asian-Australasian Journal of Animal Sciences, 30(3), 386–391. https://doi. org/10.5713/ajas.16.0214



Publication ID
DOI https://doi.org/10.21776/ub.jtapro.2020.021.01.9

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.